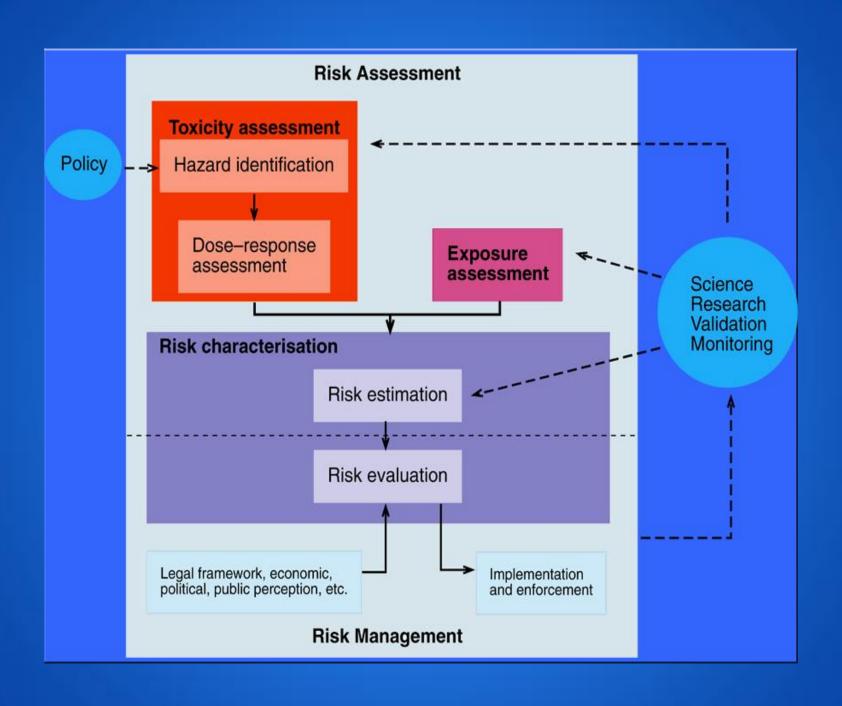
Risk Assessment and Exposure in Epidemiology

Len Levy
Institute of Environment and Health
Cranfield University

Reasons to Undertake Risk Assessment for Chemicals


- to find or predict causes of ill-health in the population or particular groups (children, workers, women, etc.)
- to see if there are changes in health (good or bad) with occupational, environmental or consumer exposure changes
- to help set "acceptable" standards for environmental contaminants (air, food, water)
- to reassure people that government/industry scientists have adequately protected them
- to comply with regulations (e.g. REACH)

Principles of Risk Assessment

- risk assessment is <u>not</u> risk management
- risk assessment is:
 - hazard identification (what)
 - exposure assessment (who)
 - risk characterisation (how much)
- all these above may contain uncertainties and require assumptions or statistical treatments
- risk management is about responding to the risk assessment:
 - prevention of exposure
 - reduction of exposure
 - balancing risk against cost
 - explaining to public groups
 - making political decisions

Role of Government and Scientists

- must respond to pressure from public, media, trade unions, etc.
- risk reduction produces "level playing field" and drives industry to use latest control technology
- avoid being over-responsive to pressure groups to over-regulate some hazards (also converse applies)
 - reduction in credibility of government/scientists
 - excessive costs and burdens of industry
 - restriction of freedom of individuals

Four stage evaluation process

1. Hazard identification

Review all toxicological and human data

2. Hazard characterisation

Dose-responses (human & animal) as well as interspecies variability in susceptibility & mode of action

3. Exposure characterisation

Estimating (or modelling) human exposure

4. Risk characterisation

Summarising all the above stages & developing an approach for genotoxic or non-genotoxic substances

Exposure Assessment

"is the measurement, estimation or prediction of intake or exposure to a chemical, in terms of magnitude, duration and frequency, for the general population, for sub-groups of the population, or for individuals."

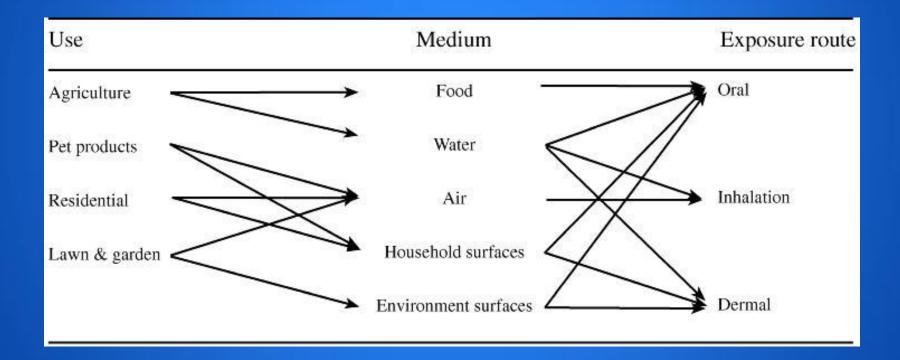
Source Characterisation Release:

"is the measurement made to characterise the rate of release of agents into the environment from a source emission such as an incinerator, landfill, industrial or municipal facility, consumer product, etc."

Exposure Characterisation

- Most important part of exposure assessment
 - brings together assessment (data and estimates)
 with discussion, analysis and conclusions
 - allows key assumptions and uncertainties to be expressed

 Leads to balanced representation of all relevant available data and relevance to health effects.


Key Features of Exposure Characterisation

- purpose, scope, level of detail and approach of exposure assessment (including key assumptions)
- estimates of exposure and dose by pathway and route for individuals, sub-groups or whole populations in a manner appropriate for the intended risk characterisation
- evaluation of the overall quality of the exposure assessment and the degree of confidence the authors have in the estimates of exposure and dose, and the conclusions drawn
- summary and interpretation of data and results that can be applied, along with characterisation of other risk assessment elements, to develop a risk characterisation.

Nature of Exposure Assessment / Characterisation

- can be extremely complex problem
- need to consider <u>all</u> sources of possible release
- need to consider all pathways/media:
 - air
 - water
 - food
 - dermal contact
- need to consider particular groups/individuals
- need to consider expense and practical considerations

Environmental Pesticide Exposure

Why Measure or Estimate Exposure?

Many good reasons:

- compliance with standard
- setting new standards
- looking for peaks
- estimating averages (days, months)
- looking at trends (air/water pollution)
- research (prospective, retrospective, etc.)

Purpose and Practicability of Exposure Assessment

 Research or other key questions decide type of exposure method:

- Who? (population, sub-population)
- How long? (days years)
- Metric? (fibres/ml, mg/m³, ppm)
- Precision? (ever / never)
- When? (now, in the past)

Research Question

Hazard + Exposure = Risk

- is it whole population?
- a sub-population? (children, elderly)
- is it the right hazard?
- how much accuracy do you really need?

Assessing Exposure for Research Purposes

- General issues to consider before assessing exposure
- Summary of common exposure-measurement methods
- What are the implications of errors in exposure?
- How do you reduce errors?

Exposure Measurement Relevant to Health (1)

Causative/associated agents may produce:

- Physiological changes
- Actual disease
- May be a confounder of something else
- May modify another agent
- May be unrelated, but associated with outcome to be studied

Exposure Measurement Relevant to Health (2)

Key features of exposure - Remember:

- 1. Exposure is <u>not</u> the same as uptake
- Time relationship of exposure to disease outcome (now – then)
- 3. Exposure is only a surrogate of what you really want.

Practical Aspects of Exposure Assessment

- Which agents should you measure?
- What is the most appropriate way of measuring?
- Is the "average time" best related to your research question?
- What is the human duration of exposure of concern?
- Can your sampling strategy characterise exposure across individuals/groups over time and locations?
- What statistical approaches are you going to use to relate exposure to effect?

Different Ways of Measuring Exposure

Exposure

Exposure in air

Exposure in drinking water

Exposure via food

Exposure through skin

Uptake

Biological fluids

Biological target tissues

Biomarkers

[breathing zone]

[general air]

[x2 litres / day]

[diet survey]

[contact x uptake]

[blood/urine]

[target cells]

[DNA adducts]

Exposure Metrics

- Ever never exposed [simplest]
- Duration of living in location / employment
- Total cumulative exposure [activity diaries]
- Average exposures [one week? one year?]
- Worst days' exposure [time series]
- Highest-peak exposure [acute effects]

Classification of Exposures

- Personal attribute or environmental exposure?
- Subjective or objective data?
 - Questionnaires
 - Expert judgement
 - Time activities diaries
 - Actual chemical analyses
- Present or past experience
 - Relate to type of health effect
 - Acute or chronic condition

Methods of Exposure Measurements

Direct

- Area sampling
- Personal monitoring
- Biomonitoring / biomarkers

Indirect

- (micro) Environmental monitoring
- Personal interview
- Questionnaire
- Time activity diary
- Exposure modelling

Assessment of Personal Exposure to Air Pollution

 air pollution is known to cause acute and chronic ill-health effects

 it is often measured by fixed-site monitoring stations (FSMS's)

- good exposure assessment required for:
 - research on health effects
 - setting air quality standards

Personal Exposure to Pollutants

 People move between various micro-environments (indoors and outdoors)

Most people spend 90% of time indoors

 Interaction between temporal and spatial variation in air pollution concentrations and time-activity of people mean all individuals are unique

Need to consider frequency distributions of exposures within populations

Sources of Air Pollution

Vehicle emissions

Factory emissions

Power stations

Types of pollutant can be gaseous (ozone, CO₂, CO, sulphur dioxide, oxides of nitrogen, benzene, PAHs) or particulate (carbonaceous, fine salts, lead, other metals, etc.)

Exposure Measurements Need to be Related to Health Outcomes

Acute

- asthma attacks
- "heart attacks"
- acute bronchitis

Chronic

- lung cancer
- chronic bronchitis

For research <u>or</u> standard setting

Means of Determining Exposure to Air Pollutants

- Exposure analysis approaches (direct or indirect)
- Direct
 - personal monitoring
 - biological markers (PBPK models)
- Indirect
 - environmental monitoring
 - models
 - questionnaires
 - time-activity diaries

Exposure Documents

 Guidelines for good exposure assessment practice for human health effects of chemicals http://ieh.cranfield.ac.uk/ighrc/cr10.pdf

 Current approaches to exposure modelling in UK Government Departments and Agencies

http://ieh.cranfield.ac.uk/ighrc/CR15.pdf